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Abstract

It has been reparted that a subset of type Il taste cells express glutamate decarboxylase {GAD)67, which is a molecule
that synthesizes gamma-aminobutyric acid (GABA), and that Mash could be a potential regulator of the development of
GABARergic neurons via DIx transcription factors in the central nervous system. In this study, we investigated the expression
of GADB7 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KOY
GADG7-GEP knock-n mice. In the wild-type animal, a subset of type Il taste cells contained GADE7 in the taste buds of the
soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash’
KO mice. A subset of type lll cells expressed mRNA for DIx5 in the wild-type animals, whereas DIx5-expressing cells were not
evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest
that Mash1 Is required for the expression of GAD67 and DIx5 in taste bud cells.

Key words: DIx, glutamate decarboxylase 67, Mash!1, taste bud, type lll cell

Introduction

In mammals, most taste buds are observed in the stratified
squamous epithelium of the dorsal surface of the tongue
where they are concentrated in the circumvallate, foliate,
and fungiform papillae, Several elongated cells assemble to
form an onion-shaped taste bud, which constantly differ-
entiate from basal stem cells within the taste buds (Beidler
and Smallman 1965; Farbman 1980). The gustatory cells
(type [TT cells) observed in taste buds have been identified
a5 paraneurons because they possess the characteristics
of both neuronal and epithelial cclls (Fujita et al. 1988).
Similar to neurons, these cells form synapses with gusta-
tory nerve fibers, store and release (ransmitters, and are
capable of generating action potentials (Roper 1989, 1992).
Similar to epithelial cells, taste cells have a limited lifespan;
they undergo continuous renewal and are regularly replaced
throughout the lifespan of mammals from approximately 10

profiferative basal stem cells per bud (Beidler and Smallman
1965; Farbman 1980; Delay et al. 1986; Stone et al. 2002).
Mammalian homologues of Drosaphila proncural genes
have been identified in the achacte-scute complex, Mashl
is & mammalian achaete-scute homologue of the proneural
gene, which cncodes basic helix-loop-helix (bHLH) tran-
scription factors (Johnson et al, 1990; Guillemot and Joyner
1993). Mash| is specifically expressed in subsets of neuronal
precursors in both the developing central nervous system
and peripheral nervous system (Lo et al. 1991; Guillemot
et al. 1993). Disruption of the Mash] gene in mice results in
the elimination of most olfactory and autonomic neurons,
suggesting that Mashl may play a role in determining the
cell fate of specific neural lincages (Guillemot et al. 1993;
Sommer et al. 1996; Blaugrund et al. 1996). In addition,
Mashl promotes differentiation of the retina, olfactory
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epithelium, and neuroendocrine lineages and is essential
for the production of the correct ratios of neural cell types
(Tomita et al, 1996; Porteus et al, 1994; Gordon et al. 1995).
We demonstrated that the bHLH transcription fac-
tor Mashl is cxpressed in the taste papillac of mouse
embryos, In addition, Mash! is expressed in subsets of cclls
within mature taste buds of adult rodents (Seta et al. 1999;
Kusakabe et al. 2002; Miura et al. 2003, 2005; Nakayama
et al. 2008). Mash! expression occurs slightly after taste bud
cell differentiation in adulthood, implying the continuity of
Masli1 exprossion during cell differentiation from basal cells
to elongated cells (Miura et al. 2006; Nakayama et al. 2008).
We observed that Mashl was expressed in some basal cells
and in the majority of differentiated type III taste cells but
never in type II taste cells (Seta et al, 2006). Furthermore,
we demonstrated that Mashl is required for the expression
of aromatic l-amino acid decarboxylase (AADC) in type ITI
cells in the taste buds, which supports the hypothesis that
different taste bud cell types have progenitor cells that are
specific to each cell type (Seta et al, 2011).
Gamma-aminobutyric acid (GABA) is a known neuro-
transmitter candidate related to taste signaling in taste buds
(Dvoryanchikov et al. 2011, Huang et al. 2011). GABA
is the major inhibitory neurotransmitter in the nervous
system and it has several roles, including the regulation
of proliferation, migration, differentiation, and synapse
formation during embryonic development (Barker et al,
1998; Lujan et al, 2005; Kwakowsky et al. 2007). GABA
is synthesized from glutamate by glutamate decarboxy-
lase (GAD), which has 2 molecular isoforms, GAD65 and
GADG67 (Erlander et al, 1991; Martin et al. 2000). Recent
studies have demonstrated that GADG7 is expressed in the
type TII taste cells of mice (DeFazio et al. 2006; Tomchik
et al. 2007). In addition, studies have shown that the expres-
sion of DIx genes, which are the vertebrate homologues of
the Drosophila distal-less (dlIf) that controls cell differen-
tiation and morphogenesis (Perera et al,, 2004), is closely
associated with GABAncrgic neurons in the central nerv-
ous system (Fode et al. 2000). Morcover, the ectopic expres-
sion of Dlxs induced the expression of GADs, which are
enzymes that synthesize GABA (Stiihmer et al. 2002a,b).
In the developing forebrain, the GAD67 and GADGS5 genes
arc coexpressed with the homeobox genes DIx2 and DIx5,
which are sequentially induced and are upstream regulators
of GAD (Liu et al, 1997; Eisenstat et al. 1999; Stiihmer
et al, 2002a,b). Similar to the developing forebrain, DIx2
expression in the lens is induced prior to DIx5 according
to semiguantitative reverse transcription—polymerase chain
reaction (RT-PCR), where these transcription factors over-
lap with the expression domains of GAD (Kwakowsky et al,
2007). Expression of the Mash1 and Dlx genes overlaps in
the mouse forebrain, suggesting that these genes genetically
interact during mouse forebrain development (Porteus
et al. 1994; Andrews et al. 2003). In addition, Mashl
knockout (KO) mice have defects in the ncural specification

and in the timing of differentiation in the ventral forebrain,
including the altered telencephalic expression of DIx genes
and GADG7 (Casarosa et al. 1999; Horton et al. 1999; Yun
et al. 2002; Long et al. 2009). However, the expression of
Dlx genes has not been described in taste bud cells,

Tn this study, we investigated the altered expression of
GADG7 in the type I11 cells in mouse taste buds using Mashl
KO mice, which expressed green fluorescent protein (GTFP)
under the control of an endogenous GADG7 promoter.
Furthermore, we examined the expression of DIx5 in the
taste buds of Mash1 KO mice.

Materials and methods

Animals

All of the animals used in this study were maintained and
handled according to protocols approved by Kyushu Dental
University Animal Care. The adult animals used in this
study were Mashl heterozygous mutant (Mash! "y mice
(Guillemot et al. 1993) and GAD67-GFP knock-in mice
(Tamamaki et al. 2003). All of the embryos used in this
study were obtained from timed pregnant heterozygous
Mash1 mutant (Mash1*™) mice with heterozygous GADG7-
GFP knock-in mice. Mash1'"; GAD67-GFP heterozygous
parents were obtained by crossing Mash1*" transgenic
males with heterozygous GADG67-GFP females and crossed
with Mashl""; GADG7-GFP mice to obtain Mashl KO;
GAD67-GFP cmbryos. The genotyping of Mashl KO
mice used PCR with the following primers: Mashl KO
sense, 5-ACGACTTGAACTCTATGGCGGGTTCTC-3;
Mash1 wild-type antisense, 5-GCCACTCTCAGGGGCCA
AGACTGAAGTTAA-3"; Mashl KO antisense, 5-AAATT
AAGGGCCAGCTCATTCCTCCACTCA-3’, This PCR-
based technique enabled the discrimination of Mash1*",
Mashl™, and wild-type Mash1"™ micc, GAD67-GFP mice
were genotypes by PCR using the following primers: GAD67-
GFP sense, 5-GGCACAGCTCTCCCTTCTGTTTGC-3
GAD67-GFP mutant antisense, 5-CTGCTTGTCGGCCAT
GATATAGACG-3". In this study, we used Mash1 KO; GAD
67-GFP (Mashl"'; GAD67-GFP), Mashl KO (Mash1™),
wild-type; GAD67-GFP (Mashl™"; GADG67-GFP), and
wild-type (Mash1™) mice,

The day of vaginal plug detection was considered to be
embryonic day 0.5 (E0.5). Pregnant mice were sacrificed on
E18.5 by administering an overdose of sodium pentobarbi-
tal, and the embryos were surgically removed. Adult mice
(6-8 weeks) were anesthetized by administering an intraperi-
toneal injection of pentobarbital (50 mg/kg) and perfused via
the left ventricle with 4% paraformaldehyde (PFA) in phos-
phate buffer, pH 7.4. The heads and tongues of the embryos
and adults were fixed overnight in 4% PFA and embedded
in OCT compound (Sakura). Cryosections (6-8 pm) were
mounted on Superfrost slides (Matsunami) and stored in

airtight boxes at —80°C
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In situ hybridization

Tissue scctions were processed for in situ hybridization as
previously described (Seta el ul, 2006). In brief, rehydrated
sections were treated for 10min with 0.2 N HCI and for
S5min with proteinase I (1 pg/mL in Tris-EDTA). The
sections were subsequently washed in phosphate-buffered
saline (PRS), refixed for 20min in 4% PFA, and treated
twice for 15min with glycine (2mg/mL in PBS). The sec-
tions were prehybridized for 1h at room temperature in
hybridization buffer. Digoxigenin-labeled antisense and
sense riboprobes were generated from plasmids containing
DIx5. Hybridization was performed overnight at 68°C in
hybridization bulfer containing 0.5-1.0 pg/mL of the ribo-
probe. Bxcess probe was removed by sequential washes,
and the sections were then blocked for 1h in 1% blocking
reagent in maleic acid buffer (0.1 M maleic acid and 0.15M
NaCl). The sections were incubated for 2 h with anti-digox-
igenin antibody conjugated with alkaline phosphatase in
a 1:250 dilution in blocking solution, The sections were
rinsed thrice with PBS, and the bound antibody was visual-
ized using the 4-nitro blue tetrazolinium chloride/5-bromo-
4-chloro-3-indolyl-phosphate  (NBT/BCIP) blue color
reuction. The scctions were refixed in 4% PFA for subse-
quent imaging or were subjected to further immunohisto-
chemical experiments.

Immunohistochemistry

After in situ hybridization, some sections were analyzed to

_determine the presence of taste receptor cells using antibod-

ies against AADC and gustducin. The sections were rinsed
in PBS, blocked for 2h in 5% goat serum in PBS, and incu-
bated overnight with primary rabbit anti-gustducin (1:200;
s¢-395, Santa Cruz) and anti-AADC (1:200; AZ1030, Enzo
Life Sciences) overnight at 4°C in a humidified chamber,
After rinsing with PBS, the sections were incubated over-
night at 4°C with goat anti-rabbit 1gG conjugated to Alexa
Fluor 488 (1:1000; A11034, Invitrogen). After rinsing with
PBS. (he sections were incubated with 2 pg/mL 47,6-diami-
dino-2-phenylindole dihydrochloride (DAPI; MERCK)
and mounted in Vectashicld (Vector Laboratories) under a
coverslip.

Immunofluorescent and in situ hybridization images were
collected using an Olympus DP72 CCD camera mounted
onto an Olympus BX50 microscope. Digital images were
acquired using the DP2-BSW software, converted into
TIFF format, and contrast- and color-adjusted using Adobe
Photoshop CS3 for Macintosh. In addition, overlays of
fluorescence and in situ hybridization images were gener-
ated in Photoshop as follows: the in situ hybridization image
was initially inverted and the blue and green channels were
deleted to black, leaving an inverted, pseudocolored red
image., Furthermore, the green fluorescence image of the
same field of view was pasted into the green channel (o pro-
duce the overlay.

.GADG7 and DIx5 Page 3 of 12

Whole mount observation of GAD67 in the soft palate of
mouse embryos

To visualize the localization of GADG7, we performed
whole mount observations of soft palates obtained from
Mashl KO; GADG67-GFP (Mashl™"; GAD67-GFP) and
wild-type; GADG7-GFP (Mﬂshlm: GADG67-GFP) mice.
The soft palates were dissected from E18.5 embryos and
incubated for 60 min at 37°C in a-MEM (Invitrogen), which
was supplemented with 2% collagenase, type IV (Sigma).
After incubation, the epithelium of the soft palate was
manually separated from the underlying connective tissue
using fine forceps. The epithelia were fixed in 4% PFA in
phosphate buffer for 60min at 4°C and washed with PBS.
Furthermore, the epithelia were incubated with 2 ng/mL
DAPI, Fluorescence images were captured using a CCD
camera (Olympus).

Reverse transcription-polymerase chain reaction

For RT-PCR, the circumvallate papillae were dissected from
adult mouse tongues and incubated for 60min at 37°C in
a-MEM (Invitrogen) containing 2% collagenase, type IV
(Sigma). After incubation, the epithelia of the eircumval-
late papillac were manually separated from the underlying
connective tissue using fine forceps. The total RNA was iso-
lated from the epithelia of the circumvallate papillae, and the
RNA was incubated with DNase T, Single-stranded ¢cDNA
was produced from the total RNA via reverse transcription
using an oligo-dT primer and avian myeloblastosis virus
(AMV) reverse transcriptase at 42°C for 4 h, Following dena-
turation at 94°C for 120 s, PCR amplification was performed
under the following conditions: 94°C for 30 s, 55°C for 30 s,
and 72°C for 1 min for a total of 35 cycles, followed by a final
elongation for 15min at 72°C. The reverse transcriptase step
was omilted for the negative contral samples Lo confirm the
removal of all the genomic DNA. The amplification prod-
ucts were analyzed on 2% agarose gels and visualized using
ethidium bromide. The sequences of the primers used were
as follows:

DIx2: 5-CGGGGACGATTTTCTAACCT-3 (forward)
and 5-CTGCTGAGGTCACTGCTACG-3’ (reverse); DIx5:
5-CAGAAGAGTCCCAAGCATCC-¥ (forward)and 5-CT
GGTGACTGTGGCGAGTTA-Y (reverse); [-actin: 5'-cac-
cetgtgctgeteace-3” (forward) and  5'-geacgatttcectetcag-37
(reverse).

Results

Expression of GAD67 in the type lll cells of the taste buds

To determine the cell types that express GAD67 in the taste
buds, we performed immunchistochemistry with an anti-
body against AADC using the taste buds of GAD67-GFP
knock-in mice (adult). Previous studies demonstrated that
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Figure 1 Expression of GADG7 in the circumvallate papillae of adult mice. GFP-positive GADG7-expressing cells (green, A), AADC (red, C), and thelir
overlay (B) in a longitudinal section. A small number of AADC-positive taste cells lacking GFP (GADE7; arrows). Nudlei are labeled with DAPI (blue, B), Scale
barin B =20 pm.

Mash1 KO mouse soft palate Wild type mouse soft palate
anterior anterior

nosterior

Figure 2 Whole mount observation of GADE7 in the soft palate taste buds of Mash1 KO (A, C) and wild-type mice (B, D) at E18.5. At E18.5, GAD67-
positive cells were expressed in the epithelium of the soft palate in wild-type mice (B, D; arrows), In contrast, GAD67-positive cells were absent from
the Mash1 KO sofl palate epithelia (A, C). Nuclei are labeled with DAPI (blue, €, Y. Scale bars in A, B = 200 pm; scale bars in C, D = 10 pm.
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Mash1 KO mouse Wild type mouse
circumvallate papilla circumvallate papilla
A o B Pt

Figure 3 Expression of GADG7 in the circumvallate papillae of Mash1 KO mice (A, C, E) and wild-type mice (8, D, F} at E18.5. GAD67 was expressed in
the aplcal epithelia of the crcumvallate papillae in wild-type mice (D, F; arrows). In contrast, GADB7-positive cells were missing from the epithelia of the
creumvallate papillae in Mash1 KO mice(C, E). Nuclei are labeled with DAPI (blue, [, F), Scale bars in A, B, C, D = 50 prm; scale bars in E, F = 25 pm.
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both GADG7 and AADC are markers of a subset of type
11T taste cells (Murata et al. 2010; Seta et al. 2011). GFP-
positive GADG7-expressing cells were observed in a small
population of taste cells. All of the GADG7-expressing
taste cells exhibited immunoreactivity with AADC (100%;
107/107). However, approximately 56.9% of the AADC-
positive tuste cells also expressed GADG7 (56.9%; 107/188)
(Figure 1),

Expression of GADG7 in the soft palate, circumvallate
papillae, and fungiform papillae of Mash1 KO mice

To determine the effects of the loss of Mashl on the
differentiation of taste cells, we examined the expres-
sion of GADG7 in the soft palate, circumvallate papil-
lae, and fungiform papillac of Mashl KO mice at E18.5
because Mashl KO mice die within 24h of birth., At
E18.5, GADG7-positive cells were expressed in the epithe-
{ium of the soft palate in wild-type mice (Figures 2B,D).

Mash1 KO mouse
fungiform papilla

__-AA,..‘,,,,J—"
. b’ s ‘-y‘?&:‘ ’
2 ‘,J e <.
¥ ; ~
- g % &

o

5

=

‘:'.

In contrast, GADG7-positive cells were absent from the
Mashl KO soft palate epithelia (Figures 2A,C), Similarly,
GADG7 expression was present in both the circumvallate
papillac and fungiform papillae of E18.5 of wild-type mice
(Figures 3B,D,F and 4B,D). However, GADG7 cxpression
was absent from Mash1 KO mice at E18.5 (Figures 3A,C,E
and 4A,C). At E18.5, the taste buds could be visualized
in the epithelium of the soft palate, circumvallate papillae,
and fungiform papillac in the wild-type and Mashl KO
mice. These results indicate that Mashl was involved in the
promotion of GAD67-GFP-labeled type I1I taste cell dif-
ferentiation although Mashl did not play a role in taste
bud development.

RT-PCR analysis

We performed RT-PCR experiments to assess the expres-
sion of the DIx2 and DIx5 genes in the mouse circumval-
late papillae epithelium. RT-PCR using RNA prepared

Wild type mouse
fungiform papilla

By g e

Figure 4 Expression of GADG7 in the fungiform papillae of Mash1 KO mice (A, C) and wild-type mice (B, D) at E18,5. GAD67 was expressed in the api-
cal epithelia of the fungiform papillae in wild-type mice (B, D; arrows), In centrast, GADG7-positive cells were missing from the epithelia of the fungiform

papillae in Mash1 KO mice (A, C). Arrowheads indicate taste buds. Nuclei are labeled with DAP| (blue in C, D). Scale bars = 20 pm.
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from the epithelium of the circumvallate papillae and brain
detected amplification products of the expected size (DIx2:
931 bp, DIx5: 647 bp), which were obtained using primer sets

B CV

DIx2

DIx5

p-actin

-RT

Figure 5 Analysis of DIx2 and DIx5 expression in the mouse tongue,
RT-PCR was performed using mRNA prepared from the epithelium of
circurmvallate papillae (CV) and brain (B). Amplification products of the
expected sizes (DIx2: 931bp, DIx5: 647 bp) were obtained using primer
sets specific for mouse DIx2 and DIx5, Expression of B-actin mRNA was
used as a control. The reverse transcriptase step was omitted for the nega-
tive contrals ta confirm the removal of all the genomic DNA,
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specific for mouse DIx2 and DIx5 (Figure 5), and they were
sequenced to confirm their identities. Moreover, an amplifica-
tion product was not obtained using RNA prepared from the
epithelium of circumvallate papillae in the absence of reverse
transcription,

Expression of DIx5 in the circumvallate papillae of adult mice

To cxamine whether DIx5-expressing cells are located in the
taste buds, we performed in situ hybridization in the mouse
circumvallate papillac using a DIx5 probe. Signals for DIx5
were observed in a subset of the elongated taste bud cells and
epithelial cells that surrounded the taste buds (Figure 6). To
further assess the cells that expressed DIx5 in the taste buds,
we performed double labeling using in situ hybridization for
DIx5 and immunohistochemistry for the taste cell markers
(AADC and gustduein). Immunofluorescence indicated that
Dlx5 was expressed with a staining pattern that did not over-
lap with gustducin-immunoreactive (IR) cells (Figure 7C;
Table 2). Approximately 35% of the Dlx5-expressing cells
exhibited immunoreactivity for AADC (35.1%, 39/111,

“Figure 7F; Table 2), whereas 16% of the AADC-positive

cells also expressed DIx5 mRNA (15.9%, 39/245, Figure 7F;
Table 2).

Expression of DIX5 in both the circumvallate papillae
epithelium and soft palate at E18.5

To investigate the effect of the loss of Mashl on the expres-
sion of DIx5, we examined the expression of DIxS in both
the circumvallate papillac and soft palate in Mashl KO
mice. At E18.5, DIxS-expressing cells were observed in the
circumvallate papillae in abundance in the epithelium of
the deep portion of the trenches. In addition, DIx5 expres-
sion was detected in a small number of cells in the apical
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Figure 6 Expression of DIx5 mRNA in the circumvaliate papilla of adult mice (A, B). DIx5 mRANA was detected in a subset of taste bud cells and epithelial
cells that surrounded the taste buds but were not observed in other papillary epithelial elements. Scale bar in A = 200 pm; scale bar in B = 50 pm.
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gustducin

Figure 7 Comparison of DIx5 mRNA expression based on the immunofluorescent detection of gustducin and AADC in the circumvallate papillae of adult
mice. The immunofiucrescence of the taste cell markers is shown in the left column (green; A: gustducin, D: AADC), DIx5 mRNA expression is shown in
the midele column (red), and computer-generated overlays are shown in the right colurmnn (C: gustducin, F: AADC). Several AADC-posttive taste cells coex-

prassed with DIx5 mANA (arrows). Scale bars in A-F =10 pm.

Table 1 Expression of GADGY and DIx5 in Mash1 KO and wild-type mice at E18.5

GADB7 Soft palate Circumvallate papilla Fungiform papilla

KO WT KO WT KO WT
Taste bud (=) (1 =) (+) (=) ()
Epithelium =) = (=} =) =) =)
DIx5 Soft palate Circumvallate papilla

KO WT KO WT
Taste bud = {+) =) +
Epithelium ) (+) (+) (+

(=), not detectable; {+), detectable,

papillary epithelium of wild-type mice (Figure 8B, arrow).
In Mashl KO mice, DIx5 expression was also detected
in cells in the deep trench epithelium of the circumval-
late papillae, which was similar to the wild-type mice.

However, DIx5-cxpressing cell clusters were not observed
in the apical circumvallate papillac in Mashl KO mice
{Figure 8A). DlxS-expressing cells were observed in taste
bud cells and in the epithelial ridge of the soft palate in
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wild-type mice (Figure 9B). However, DIx5-expressing cells
were not observed in the taste bud cells in Mash1 KO mice
(Figure 9A).

Table 2 Extent of the overlap of taste bud cells that expressed DIx5
mMRNA with cells that were immunopositive for taste cell markers

Total labeled cells

) DIx5 =22 DIx5 n=111
In situ
hybriclization Gustducin n=61 AADC n=245
markers )
Coexpression n=0 Coexpression n=39

Mash1 KO mouse
cireumvallate papilla

GADG7 and DIx5 Page 9 of 12

Discussion

In this study, we demonstrated that GAD67-positive cells
were absent from both the circumvallate papillae and taste
buds of the soft palate in Mashl KO mice. Morcover, DIx5
was expressed in a subset of the type 111 cells of the adult
taste buds, whereas DIx5-expressing cell clusters were not
observed in the apical circumvallate papillac and taste buds
of the soft palate in Mash1 KO embryos.

Our results indicate that GADG67-positive cells and
AADC-IR cells colocalized within the taste buds. We previ-
ously showed that AADC-IR cells were absent ftom the taste
papillac of Mashl KO mice (Seta et al. 2011). In this study,

Wild type mouse
circumvallate papilla
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Figure 8 Expression of DIx5 mRNA In the circumvallate papillae of Mash1 KO (&) and wild-type (B) mice at E18.5, DIx5 was expressed at E18.5 in the
epithelial cells in the deeper partien of the trenches in the circumvallate papilla, DIx5 was also observed in small cell clusters In the apical papilla epithelium
(B; arrow) of wild-type mice, whereas these cells were missing from Mash1 KO mice (A), Scale bars = 25 um,

Mash1 KO mouse soft palate
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Figure 8 Expression of DIx5 mRNA in the soft palate of Mash1 KO (A) and wild-type (B) mice at E18.5, DIx5-expressing cells were observed in taste buds
and the epithelial ridge in wild-type mice (B). However, Dix5-expressing cell clusters were not observed in the taste bud cells of Mash1 KO mice(A). The

arrows indicate taste buds, Scale bars = 50 pym,
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we observed that GADG7-positive cells were absent from the
taste papillae of Mashl KO mice. These results suggest that
the expression of both GAD67 and AADC may be regulated
by Mash1 during type III taste bud cell differentiation. We
previously showed that the type IIT cell markers NCAM and
SNAP2S were expressed in the soft palate epithelia of Mashl
KO mice using RT-PCR, and NCAM-immunepositive cells
were observed in the soft palate taste buds of Mash| KO mice
(Seta et al, 2011). Two hypotheses may explain our results
obtained using Mashl KO mice: 1) AADC- and GADG7-
expressing type ITT cells are absent from Mashl KO mice but
other type 11T cells (NCAM- and SNAP25-cxpressing) are
not affected or 2) the differentiation of type TIT cells is not
affected by the loss of Mashl, but Mash! is required for the
expression of AADC and GAD67 in a subsct of type I cells.
Because Mash] KO mice die prior to taste bud formation in
the taste papillae, it was not possible to determine whether
Mashl affocted the differentiation of type III cells. Thus, it
remains to be determined whether Mashl is required for the
differentiation of type I11 cells in the taste buds.

The vertebrate DIx homeobox gene family consists of 6
known murine members. Among these genes, DIx1, DIx2,
DIx5, and DIx6 are expressed in the subcortical forebrain,
mainly in those arens where GABAnergic neuron differentia-
tion occurs and in precursors of the GABAnergic lineage. In
general, these genes are expressed in the following temporal
sequence; DIx2, Dix1, DIx5, and DIx6, Targeted inactivation
of DIxl and DIx2 in the mouse resulted in abnormal differ-
entiation in the embryonic subcortical forebrain, which was
associated with the loss of DIx5 and DIx6 cxpression (Perera
et al, 2004). As a result, GABAnergic interncurons were
depleted in the cerebral cortex, olfactory bulb, and hippocam-
pus. Ectopic expression of DIx2 or DIx5 in cortical neurons
could induce the expression of GADs, which are the enzymes
that synthesize GABA. Using RT-PCR, our present results
indicated that DIx2 and DIx5 were expressed in the circumval-
late papillae epithelium, whereas DIx5 mRINA was expressed
in a subset of type I1I cells in the taste buds. Taken together,
these results suggest that GAD expression in the taste buds
may be repulated by Dlxs in a manner similar to that in the
central nervous system.

Previous studies have shown that GABAnergic neuronal
differentiation is controlled by Mashl (Roybon et al. 2010).
Eclopic expression of Mashl results in the misspecification
of a subpopulation of early-born cortical neurons, which
ectopically express Dix1, DIx2, DIx5, and GADG67 (Fode et al.
2000). These studies indicate that Mash1 appears to function
upstream of Dixs and GADG7 in the central nervous sys-
tem. We observed that both DIx5-expressing cell clusters and
GADGT-expressing cells were absent from the apical region of
circumvallate papillae in Mashl KO mice. In addition, these
results suggest that Mashl may result in the expression of
GADG7 via Dlxs in the type 11l cells of the taste buds, which
is consistent with the results on their spatial and temporal
expression in the central nervous system (Fode et al. 2000).

In this study, the loss of Mashl affected the expression of
DIx5 mRNA in the apical epithelium of the circumvallate
papillae and taste buds of the soft palate at E18.5. However,
the DIx5 mRNA in Mashl KO mice was not affected in the
trench epithelium of circumvallate papillac and epithelial
ridges, which extend into the underlying connective tissue
in soft palate. We previously demonstrated that Mashl is
expressed in a small number of epithelial cells of the apical
circumvallate papillae but not in the deep trench epithelia at
E18.5 (Seta et al, 2003). Taken together, these results suggest
that Mashl may be required for the upregulation of DIx5 in
the taste buds, but not in the trench epithelium of the cir-
cumvallate papillac or the epithelial ridge near soft palate
papillae.

Our present and previous results indicate that Mashl
is required to regulate the expression of GAD67, AADC,
and DIx5 within the developing taste bud. In this study, we
did not investigate whether the loss of Mashl affected the
expression of DIx2 mRNA in the developing papilla epi-
thelium and taste buds. Therefore, further studies will be
required to investigate the changes in DIx2 expression in the
taste buds of Mash! KO mice.
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