

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18 19

20

21 22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

Article Effects of Both Fiber Post/Core Resin Construction System and Root Canal Sealer on the Material Interface in Deep Areas of Root Canal

Hiroki Miura¹, Shinji Yoshii¹, Masataka Fujimoto¹, Ayako Washio¹, Takahiko Morotomi¹, Hiroshi Ikeda² and Chiaki Kitamura^{1,*}

- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803–8580, Japan; r17miura fa.kyu-dent.ac.jp
 Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Koku-
- rakita-ku, Kitakyushu, Fukuoka 803–8580, Japan; r16ikeda∎fa.kyu-dent.ac.jp * Correspondence: r06kitamura∎fa.kyu-dent.ac.jp; Tel.: +81-93-582-1131

Abstract: This study aimed to examine the resin polymerization of fiber post/core resin construction system and the interface between resin and root canal sealers, which are important for root canal sealing. We used i-TFC Luminus fiber post and i-TFC Luminus LC flow (i-TFC-L), GC fiber post and Unifil Core EM

and FiberKor post and Build-It FR (FKP), as core construction systems, and Nishika Canal Sealer BG (CSposts (n=5) the polymerization of core resin (n=5), and the adhesion between the sealer and core resin (n=10) BG), Metaseal Soft (META), and Nishika Canal Sealer EN (CS-EN) as sealers. The light transmission of fiber were evaluated. i-TFC Luminus fiber post light transmission was significantly higher than that of other posts. Without shielding, i-TFC-L showed a significantly greater amount of polymerized resin than other systems. With shielding, although i-TFC-L showed a significantly greater amount of polymerized resin immediately after light irradiation, polymerized resin was significantly greater in GCF and FKP after 10 min. All systems adhered to CS-BG and META, but not to CS-EN. These results indicate that resin polymerization in the cavity differ among fiber post/core resin construction systems, and that adhesion of resin and sealer depends on the property of the sealer.

Keywords: Fiber post core construction system; Composite resin; Root canal sealer

1. Introduction

(GCF),

The sealing of endodontically treated teeth is affected by material properties of root canal filling and fiber post/core resin construction system [1].

Endodontically treated teeth were commonly filled with gutta-percha and root canal sealer. Traditionally, eugenol-based sealers with antibacterial and sterilizing properties are used as major root canal sealers, but effective sealing ability in the root canal is not guaranteed because of its poor dentin adhesion. In the 2000s, a resin-based sealer containing 4-methacryloxyethyl trimellitic anhydride (4-META) was introduced for root canal wall adherence [2]. In recent years, bioceramics-based sealers with high biocompatibility that bond to the root canal wall by inducing hydroxyapatite formation have emerged [3,-5]. In modern root canal filling, resin-based and bioceramics-based sealers play an important role in root canal sealing through adhesion/bond to the root canal wall [6-9].

Fiber posts, instead of metal posts, are now used in the restoration with composite39resin because of their elastic moduli similar to dentin, resulting in a reduction in root frac-40tures [10-13]. For successful core construction using fiber posts, polymerization of the41composite resin in the deep areas of the root canal is important for successful core con-42struction using fiber posts. However, fiber post structure has been reported to affect the43polymerization of composite resin in deep areas of the root canal [14]. Furthermore, com-44plete polymerization of composite resin for construction does not occur in the deep areas45

Citation: Lastname, F.; Lastname, F.; Last-name, F. Title. *Materials* **2021**, 14, x. https://doi.org/10.3390/xxxxx

Received: date Accepted: date Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67 68

of root canal [15-18], and the unpolymerized layer remains in the post cavity, even with the use of dual-cure type composite resin for chemical polymerization [19, 20]. Recently, a construction system combining a light cure composite resin and fiber post with high translucency has been developed and clinically applied to increase resin polymerization rate in deep areas of the root canal [21-25]. Root canal filling materials and core construction materials have improved the sealing effectiveness in each development process.

In clinical practice, the root canal sealer and core resin are used without considering the difference in the properties of each material. In addition, the adhesion of fiber post/core resin construction system or root canal sealer to dentin has been reported extensively in previous research. However, there are few reports on the material interface between the composite resin used for construction and the sealer for the root canal filling, which is an important factor in achieving a root canal monoblock and complete root canal closure after core construction [26-30].

This study aimed to investigate the adhesion between core resin of the construction system and the root canal sealer in the context of material-property differences between the fiber post/core resin construction system and root canal sealer. This study was based on two null hypotheses. The first null hypothesis was that core resin of each core construction system polymerizes completely immediately after light irradiation. The second null hypothesis was that the core resin cannot adhere to each root canal sealer. We investigated the light transmittance of fiber posts, the extent of polymerization of construction composite resin, and the interface between the core resin and root canal filling sealer in the deep areas of the root canal.

2. Materials and Methods

Three types of core construction systems (i-TFC Luminus fiber post and i-TFC Luminus Fiber LC Flow [i-TFC-L], Sun medical Corp., Japan; GC fiber post N and GC Unifil Core EM [GCF], GC, Japan; and FiberKor post and Build-It FR [FKP], Pentron Corp., USA), and three types of root canal sealers (Nishika Canal Sealer BG [CS-BG], Nishika, Japan; Metaseal Soft [META], Sun medical Corp., Japan; and Nishika Canal Sealer EN [CS-EN], Nishika, Japan) were investigated (Table 1).

2.1. Fiber Post Transparency

Each fiber post was cut into 18 mm pieces and irradiated using a light irradiator (Radii78Plus; SDI, Australia) directly on the non-tapered side with the silicone-shielding around the79edge. The amount of light transmission (units: counts, specific wavelength: 459.5 nm) at the80post apex through fiber post (n=5) was measured by a multi-channel spectroscope (FLAME-81S-XR1-ES; OptoSirius, Japan) (Figure 1).82

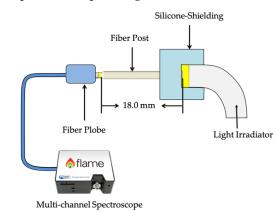


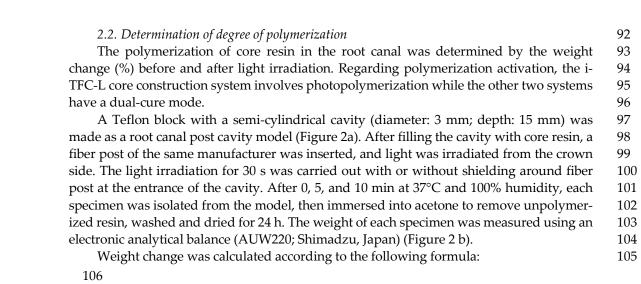
Figure 1. Schema of Fiber Post Transmission Test

69

70

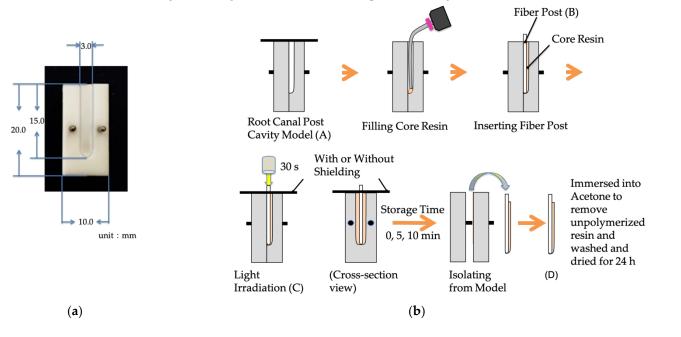
71

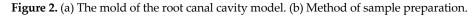
72

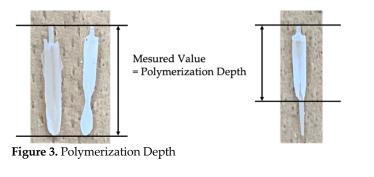

73

74

Table 1. Investigated materials. Bis-MPEPP:2,2-Bis[4Bis-MPEPP:2,2-Bis[4-(methacryloxyethoxy)phenyl]propane,4-META: 4-methacryloyloxy trimellitate anhydride, Bis-GMA: bisphenol A-glycidyl dimethacrylate, UDMA: ure-thane dimethacrylate , 4-MET: 4-[2-(methacryloyloxy)ethoxycarbonyl]phthalic acid, HDDMA: 1,6-hexanedioldimethacrylate, HEMA: hydroxyethyl methacrylate, MDP:10-methacryloyloxydecyl dihydrogen phosphate


91	Manufactur er	Shape	Component	Lot	Code	
i-TFC Luminus fiber		φ 1.0 mm / tapered	Borosilicate glass, Barium oxide, Dimethacrylate and diacrylate	TW12		
i-TFC Luminus Core	Sun medical		copolymer Bis-MPEPP, Barium Silica Glass,	RW4	i-TFC -L	
LC flow i-TFC Luminus bond	Corp., Japan		Aromatic diol methacrylate Bond: 4-META, Acetone, Water Catalyst: Aromatic amine,	RW13		
GC fiber post N		φ 1.0 mm / tapered	Aromatic sulfinate Slicate glass, Copolymer of methacryliate and Bis-GMA	2001291		
GC Unifil core EM	GC Corp., Japan		Fluoro-aluminosilicate glass, UDMA	1809041	GCF	
Self etching bond A&B			4-MET, methacrlate, ethanol, water	1809041		
FibreKor post		φ 1.0 mm / straight	Glass fiber, filler, Bis-GMA, HDDMA, UDMA Bis-GMA, UDMA, HDDMA,	7537776		
Build-itTM FR	Pentron Corp., USA		Bis-GMA, UDMA, HDDMA, barium borosilicate, Silica, Silane, Camphor quinone, Benzoyl peroxide	7558119	FKP	
E-Lize dentin bond II			HEMA, Bis-GMA, MDP, Silica, ethanol	190031		
Canal sealer BG	Nishika, Japan		Bioactive glass, Fatty acid, Bismuth subcarbonate, others	K36	CS-BG	
Metaseal soft			Powder:radiopaque filler, organic filler, hydrophilic chemical	Powder:R M1		
	Sun medical Corp., Japan		initiator Liquid:4-META, HEMA, di- methacrylates, water, photo- initiator	Liquid:SX 1	META	
Canal sealer E-N	Nishika, Japan		Eugenol, Rosin, Zinc oxide, Bismuth subcarbonate, others	K2F	CS-EN	


0)



Weight change (%) =
$$(D-B)/(C-A-B) \times 100(\%)$$
, (1)

A: overall mold weight with or without the use of shielding; B: fiber post weight; C: total 107 weight after light irradiation; and D: specimen weight. 108

Polymerization depth was evaluated by measuring the length from the coronal end 114 of the fiber post to the most apical point of the fiber post covered with hardened resin. A 115

111 112 113

photograph and the measurement of the depth of polymerized resin are shown in Figure 3. 116 Thirty samples were measured in these experiments (each group had 5 samples). 117

2.3. Interface of Core Resin and Root Canal Sealer

To analyze the interface of core resin and root canal sealer at the deep area of the root 120 canal cavity, shear bond test and microscopic analysis after the test were carried out. Figure 121 4 shows the schema of the experiment. The root canal sealer was hardened in the disk-122 shaped mold fabricated by acrylic resin (diameter: 10 mm, height: 2 mm). After one day, an 123 124 artificial light blocking root canal cavity model fabricated by Teflon tube (inner diameter: 4 mm; height: 15 mm) was placed on the hardened root canal sealer, and filled with core resin. 125 After injection of core resin in the tube, a silicone cover was used to block the light. A fiber 126 post by the same manufacturer was inserted into the cavity and irradiated for 30 s, and 127 stored for 1 week. The shear bond strength was measured at a crosshead speed of 1.0 128 mm/min using a universal testing machine (AGS-H; Shimadzu, Japan). The prepared 129 specimen is mounted along horizontal axis and adding shear strength along vertical axis 130 with 1.0 mm cross head speed [31]. 131 132

Crosshead

Speed .0 mm/min

Fiber Post Composite Resin 15.0 Endodontic Sealer ^↓ Resin Plate 4010.0

Light Irradiate 30 s

Figuro	1	The	cchomo	ofor	norimor	t complo
Figure 4	4.	rne	scnema	orex	perimer	t sample.

After the shear bond test, specimens were embedded with acrylic resin and cut vertically. The cut surface was polished to #8000 and observed under a scanning electron microscope (SEM) (JCM-7000; JEOL, Japan).

unit : mm

2.4. Statistical Analysis

Results of fiber post transparency, core resin weight change, and shear bond test were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (P<0.05).

3. Results

3.1. Light Transmittance of Fiber Posts

Table 2 shows each fiber post transparency. The i-TFC Luminus fiber showed significantly higher transparency values than the GC fiber post N and Fibrekor post. The Fibrekor post had a significantly lower transparency value than the other posts.

iber Post	i-TFC-L	GCF	FKP
Counts	5195 ± 639ª	2564 ± 667^{b}	381 ± 11°

Different superscript letters indicate statistical differences in row (n=5, p<0.05)

118

119

134 135

133

- 136 137
- 138
- 139
- 140 141

- 145
- 146
- 147
- 148

149

3.2. Core Resin Weight Change

Table 3 shows the weight change of core resin before and after light irradiation. When 154 the upper part of the root canal was unshielded from light irradiation, the weight change 155 for i-TFC-L (0 min: 97.5±0.1%, 5 min: 96.5±0.4%, 10 min: 96.6±0.2%) was significantly 156 higher than those of others. Regardless of the time after the light irradiation, the polymer-157 ization depth was 18.0 mm, which reached to the bottom of the cavity. GCF (0 min: 158 88.6±2.0%, 5 min: 91.3±2.4%) showed a significantly higher weight change than FKP (0 159 min: 44.7±2.0%, 5 min: 90.1±2.1%) at storage times of 0 and 5 min. At 0 min, the polymer-160 ization depth was 18.0 mm for GCF and 10.3±0.4 mm for FKP. At 10 min, the weight 161 change of FKP (96.6±1.4%) was significantly higher than that of GCF (92.6±2.3%), and 162 there was no significant difference between FKP and i-TFC-L. After 5 min, the polymeri-163 zation depth was 18.0 mm for both GCF and FKP. 164

When the upper part of the root canal was shielded from light, the weight change of 165 i-TFC-L at 0 min was the highest (66.9±4.7%), followed by GCF (41.5±4.5%) and FKP 166 (0.1±0.1%). There was a significant difference among systems. The polymerization depth 167 was 18.0 mm, 11.3±0.8 mm, and 0 mm for i-TFC-L, GCF, and FKP, respectively. i-TFC-L 168 showed the same weight change regardless of time after the irradiation (0 min: 66.9±4.7%, 169 5 min: 72.7±2.7%, 10 min: 72.2±3.0%). At 10 min after the irradiation, GCF (82.9±1.4%) and 170 FKP (93.3±1.4%) showed significantly higher values than i-TFC-L (72.2±3.0%) and FKP 171 showed more than 93%, regardless of shielding (96.6±1.4% without shielding, 93.3±1.4% 172 173 with shielding).

Without shielding						
Storage time	i-TFC-L	GCF	FKP			
0 min	97.5±0.1 ^{Aa}	88.6±2.0 ^{Ba}	44.7±2.0 ^{Ca}			
5 min	96.5±0.4 Aa	91.3±2.4 Bab	90.1±2.1 ^{Cb}			
10 min	96.6±0.2 Aa	92.6±2.3 ^{Bb}	96.6±1.4 Ac			
With shielding						
Storage time	i-TFC-L	GCF	FKP			
0 min	66.9±4.7 ^{Aa}	41.5±4.5 ^{Ba}	0.1 ± 0.1 ^{Ca}			
5 min	72.7±2.7 Aa	76.4±4.1 Ab	91.3±2.0 ^{вь}			
10 min	72.2±3.0 Aa	82.9±1.4 ^{Bc}	93.3±1.4 ^{Сь}			

Table 3. Weight change.

Same superscript capital letters indicate no significant differences (rows) for storage time. Same superscript lower-case letters indicate no significant differences between each post materials (col-umns). (n=5, p<0.05).

At 5 and 10 min after the irradiation, the polymerization depth was 18.0 mm for all systems.

3.3. Interface of the Core Resin and Root Canal Sealer

Table 4 shows the results of the shear bond test. CS-BG and META adhered to all182composite resins. The interface of core resin and CS-BG showed material fractures (n=9)183and interfacial fractures between the bonding material and CS-BG (n=1). The interface of184

174

175

176 177

178

179 180

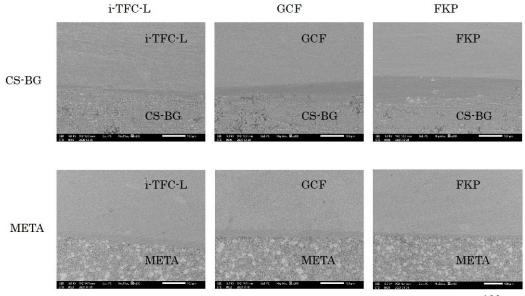
181

core resin and META showed material fractures occurred in all samples. On the other185hand, no adhesion was observed in the interface of core resin and CS-EN.186

Core resin Sealer MPa (Ave) SD CS-BG 0.22^b 0.05 i-TFC-L META 4.66^a 1.11 0 CS-EN 0 CS-BG 0.21^b 0.04 GCF META 4^{a} 0.99 CS-EN 0 0 CS-BG 0.2^b 0.06 4.41ª FKP META 1.06 CS-EN 0 0

Table 4. This table shows shear bond strength between core resin and root canal sealer.

Different superscript letters indicate statistical differences in vertical column (n=10, p<0.05)


190 191

189

192

193

Figure 5 shows representative results of the interface microstructure, showing adhesion of CS-BG and META to core resin via bonding layer.

- 100μm

Figure 5. SEM micrographs of the surfaces of boned interface between core resin and root canal sealer (200×). Adhesive surface is observed in CS-BG group and META group regardless of type of core resin.

4. Discussion

In a core construction system using a fiber post and core resin, the core resin contacts 198 the root canal filling material in the deep area of the root canal. Recently, single-point root 199 canal obturation using a resin-based or bioceramics-based root canal sealer has received 200

187

188

197

194 195

acceptance [6-9]. In this obturation, main material in the root canal is root canal sealer, so 201 the core resin mainly contacts to the root canal sealer. In the present study, the light trans-202 mittance of fiber posts, the polymerization of core resin, and the interface state between 203 the core resin and root canal sealer, were analyzed to clarify the effects of material prop-204 205 erties of the fiber post/core resin construction system and root canal sealer on the material interface in the deep areas of root canal, using three types of core construction systems 206 with different fiber post structures and composite resin polymerization modes, and three 207 types of root canal sealers with different compositions. A Teflon block with a semi-cylin-208 209 drical cavity (diameter: 3 mm; depth: 15 mm) was fabricated and used as a root canal post cavity model in this study. Although various molds were used in the preliminary experi-210 ments, a Teflon block with a semi-cylindrical cavity was the easiest to separate from the 211 hardened resin in the mold without breaking the sample. 212

First, the light transmittance of the fiber post and core resin polymerization of each system were examined. The examination of light transmittance showed that the transparency value of i-TFC-Luminus fiber was the highest and of FibreKor post was the lowest. For the examination of core resin polymerization, light irradiation was carried out with or without the shielding around fiber post at the entrance of the cavity to avoid direct irradiation of the resin. In this study, the degree of conversion (DC) in core resin after the irradiation was not measured to analyze the amount of polymerized resin. It is known that measuring device such as FT-IR can evaluate DC, but it measures only the outermost surface, not total amount. Therefore, hardened resin that remained after acetone immersion to remove uncured resin was considered as polymerized resin, and weight change (%) before and after acetone immersion was used to estimate core resin polymerization. Polymerization of the light-cure type composite resin of i-TFC-L was different in the presence or absence of shielding, whereas polymerization of both dual-cure type composite resins increased, regardless of shielding, in a time-dependent manner.

Without shielding, core resin polymerization of i-TFC-L was greater than the other systems for all periods. The fiber post of i-TFC-L consists of the optical fiber in the center and the glass fiber that covers the optical fiber. In this fiber post, irradiated light is scattered laterally via the glass fiber. The highest core resin polymerization without shielding may be the result of photopolymerization of the light-cure type composite resin, directly and indirectly via the light-transmitting fiber post.

With shielding, core resin polymerization of i-TFC-L was highest immediately after 233 light irradiation, but after the irradiation, the resin polymerization of i-TFC-L did not in-234 235 crease. It was found that 10 min after the light irradiation, polymerization of both GCF and FKP was higher than that of i-TFC-L. Difference in the progress of core resin polymer-236 237 ization may have resulted from material-property differences of both fiber posts and core resin polymerization, among the three systems. With shielding, the light scattered via the 238 glass fiber of the i-TFC-L fiber post may accelerate photopolymerization of the light-cured 239 composite resin only during irradiation, after which the polymerization stops. On the 240 other hand, chemical polymerization of both GCF and FKP may proceed after the irradi-241 ation. Interestingly, GCF showed higher polymerization than FKP immediately after the 242 irradiation; however, 10 min after the irradiation, the polymerization of FKP was greater 243 than GCF. The light transmission of the Build-it FR fiber post was very low, and photo-244 polymerization was not accelerated with shielding. Chemical polymerization of FKP core 245 resin may proceed even after irradiation. Fiber post of GCF has the light transmission, but 246 it was less than half of i-TFC-L. According to previous studies, complete polymerization 247 of the composite resin used for construction does not occur in the deep areas of the root 248 canal. Further, these studies indicate that insufficient light irradiance for the polymeriza-249 tion of the dual-cure type composite resin prevents sufficient curing reaction, reduces vis-250 251 cosity, and hinders radical transfer, ultimately preventing chemical polymerization and resulting in an unpolymerized layer [15-18, 32]. The present results are consistent with 252 253 previous reports, and may indicate that the insufficient light passing through the GCF

213

214

215

216

217

218

219

220 221

222 223

224 225

226

227 228

229

230

231

fiber post can interfere with chemical polymerization of the core resin in the deep areas of the canal cavity model.

Results on polymerization depth show that the extent of core resin polymerization 256 finally reached the bottom of the post cavity in all fiber post/core resin construction sys-257 tems, but the time taken for this was different between i-TFC-L and the other materials. 258 There was polymerization of the i-TFC-L core resin to the bottom of the post-cavity 0 min 259 after light irradiation, whereas other materials needed 5 min or more, suggesting that a 260 sufficient storage time is necessary after light irradiation when fiber post core construction 261 systems include dual-cure type composite resin. Based on our results, the first null hy-262 pothesis that core resin of each core construction system completely polymerizes imme-263 diately after light irradiation, was rejected. 264

Next, the interface of core resin and root canal sealer was analyzed. In this study, 265 three root canal sealers were used. CS-BG is bioceramics-based, META is resin-based, and 266 CS-EN is eugenol-based sealers. The shear bond test between the core resin and root canal 267 sealers showed values of 0.2–0.22 MPa and 4–4.66 MPa for CS-BG and META, respectively. 268 CS-EN did not adhere to any of the core resins. Regarding CS-EN, eugenol remained on 269 the surface of the cured product, which inhibited the polymerization of the composite 270resin and prevented adherence [33]. Furthermore, SEM observation of the material inter-271 face for CS-BG and META revealed adhesion via a bonding layer with all composite resins. 272 Calcium ions of CS-BG and the acidic monomer of the bonding agent may have bonded 273 274 via a chemical reaction, and resins may have bonded to each other for META. Therefore, the second null hypothesis that core resin cannot adhere to each root canal sealer was 275 276 rejected. Recently, it was reported that the interface between composite resin and calcium silicate-based cements showed enough shear bond strength at several restoration timing, 277 suggesting that calcium silicate-based cements may allow restorative procedures with 278 both immediate and delayed timing [34]. Results of the present study using CS-BG are 279 consistent with the result of immediate polymerization, as seen in this study. We are now 280 281 trying to clarify the shear bond strength of the interface between core resin and bioceramics-based sealers during several time frames, including delayed timing. 282

283 Overall, the present study indicates that the core resin polymerization of fiber post/resin core construction system in the root canal cavity is affected by the light trans-284 mittance of the fiber post and the polymerization type of core resin, suggesting that it is 285 286 necessary to consider the properties of each material when fiber post core construction system is clinically used. Furthermore, regardless of resin polymerization type, core resin 287 of all fiber post core construction systems adhered to the bioceramics-based and resin-288 based canal sealers, but not eugenol-based sealer, suggesting that the combination of root 289 290 canal sealer and fiber post/core resin construction system is important to obtain the adhesion at the interface of materials, and that the use of bioceramics-based or resin-based 291 canal sealer may be essential for the establishment of the root canal sealing. A limitation 292 of this study is that the experiments were conducted *in vitro* and not on human teeth. Our 293 future work will involve investigation of similar events in extracted human teeth and in 294 295 vivo.

5. Conclusions

297 Within the limitations of this study, core resin polymerization in the root canal cavity differs among fiber post/core resin construction systems. In addition, adhesion of core 298 resin and root canal sealer depends on the properties of the sealer. The use of bioceramicsbased or resin-based root canal sealers that adhere to core resin is essential for root canal 300 sealing after core construction. 301 302

303 Author Contributions: Conceptualization, C.K. and S.Y.; methodology, S.Y. and M.F.; validation, H.M. and S.Y.; formal analysis, H.M and S.Y.; investigation, H.M and S.Y.; resources, H.M.; data 304 curation, H.M.; writing-original draft preparation, H.M. and S.Y.; writing-review and editing, 305

254

255

296

	C.K., T.M., A.W., H.I. and M.F.; supervision, C.K. and S.Y. ; project administration, S.Y. and C.K.; All authors have read and agreed to the published version of the manuscript.	306 307
	Funding: This research received no external funding.	308
	Institutional Review Board Statement: Not applicable.	309
	Informed Consent Statement: Not applicable.	310
	Conflicts of Interest: The authors declare no conflict of interest.	311
Ref	erences	312
1.	Gillen, B.M.; Looney, S.W.; Gu, L.S.; Loushine, B.A.; Weller, R.N.; Loushine, R.J.; Pashley, D.H.; Tay, F.R. Impact of the quality of coronal restoration versus the quality of root canal fillings on success of root canal treatment: A systematic review and meta- analysis. <i>J Endod</i> 2011 , <i>37</i> , 895-902.	313 314 315
2.	Kim, Y.K.; Grandini, S.; Ames, J.M.; Gu, L.S.; Kim, S.K.; Pashley, D.H.; Gutmann, J.L.; Tay, F.R. Critical review on methacrylate resin-based root canal sealers. <i>J Endod</i> 2010 , <i>36</i> , 383-399.	316 317
3.	Al-Haddad, A.; Aziz, Z.A.; Che, A.B. Bioceramic-based root canal sealers: a review. Int J Biomater 2016, 4, 1-10.	318
4.	López-García, S.; Pecci-Lloret, M.R.; Guerrero-Gironés, J.; Pecci-Lloret, M.P.; Lozano, A.; Llena, C.; Rodríguez-Lozano, F.J.; For- ner, L. Comparative Cytocompatibility and Mineralization Potential of Bio-C Sealer and TotalFill BC Sealer. <i>Materials</i> 2019 , <i>12</i> , 3087.	319 320 321
5.	Santos, J.M.; Coelho, C.M.; Sequeira, D.B.; Marques, J.A.; Pereira, J.F.; Sousa, V.; Palma, P.J.; Santos, A.C. Subcutaneous Implan- tation Assessment of New Calcium-Silicate Based Sealer for Warm Obturation. <i>Biomedicines</i> 2021 , <i>9</i> , 24.	322 323
6.	Yanpiset, K.; Banomyong, D.; Chotvorrarak, K.; Laovanitch, S.R. Bacterial leakage and micro-computed tomography evaluation in round-shaped canals obturated with bioceramic cone and sealer using matched single cone technique. <i>Restor Dent Endod</i> 2018 ; <i>43</i> , 1–12.	324 325 326
7.	de-Figueiredo, F.E.D.; Lima, L.F.; Lima, G.S.; Oliveira, L.S.; Ribeiro, M.A.; Brito-Junior, M.; Correa, M.B.; Sousa-Neto, M.; Faria	327
	E silva, A.L. Apical periodontitis healing and postoperative pain following endodontic treatment with a reciprocating single-file, single-cone approach: A randomized controlled pragmatic clinical trial. <i>PLoS One</i> 2020 , <i>15</i> ,1–15.	328 329
8.	Kim, S.R.; Kwak, S.W.; Lee, J.K.; Goo Hye, J.; Ha, J.H.; Kim, H.C. Efficacy and retrievability of root canal filling using calcium silicate-based and epoxy resin-based root canal sealers with matched obturation techniques. <i>Aust Endod J</i> 2019 , <i>45</i> , 337–345.	330 331
9.	Donnermeyer, D.; Dornseifer, P.; Schäfer, E.; Dammaschke, T. The push-out bond strength of calcium silicate-based endodontic sealers. <i>Head Face Med</i> 2018 , <i>14</i> , 1–7.	332 333
10.	Tangsripongkul, P.; Jearanaiphaisarn, T. Resin composite core and fiber post improved the fracture parameters of endodonti- cally-treated maxillary premolars with wedge-shaped cervical lesions. <i>J Endod</i> 2018 , <i>46</i> , 1733-1737.	334 335
11.	Guldener, K.A.; Lanzrein, C.L.; Siegrist Guldener, B.E.; Lang, N.P.; Ramseier, C.A.; Salvi, G.E. Long-term clinical outcomes of endodontically treated teeth restored with or without fiber post–retained single-unit restorations. <i>J Endod</i> 2017 , <i>43</i> , 188–193.	336 337
12.	Aksornmuang, J.; Nakajima, M.; Foxton, R.M.; Panyayong, W.; Tagami, J. Regional bond strengths and failure analysis of fiber posts bonded to root canal dentin. <i>Oper Dent</i> 2008 ; <i>33</i> , 636–643.	338 339
13.	Nagase, D.Y.; Takemoto, S.; Hattori, M.; Yoshinari, M.; Kawada, E.; Oda, Y. Influence of fabrication techniques on retention force of fiber-reinforced composite posts. <i>Dent Mater J</i> 2005 , <i>24</i> , 280–285.	340 341
14.	Shadman, N.; Atai, M.; Ghavam, M.; Kermanshah, H.; Ebrahimi, S.F. Parameters affecting degree of conversion of dual-cure resin cements in the root canal: FTIR analysis. <i>J Can Dent Assoc (Tor)</i> 2012 , <i>78</i> , <i>c</i> 53.	342 343
15.	Khabeer, A.; Whitworth, J.; Rolland, S. Polymerization kinetics of resin cements after light activation through fibre posts: An in vitro study. <i>Int Endod J</i> 2015 , <i>48</i> , 261–267.	344 345
16.	Roberts, H.W.; Leonard, D.L.; Vandewalle, K.S.; Cohen, M.E.; Charlton, D.G. The effect of a translucent post on resin composite depth of cure. <i>Dent Mater</i> 2004 , <i>20</i> , 617–622.	346 347
17.	Yoldas, O.; Alaçam, T. Microhardness of composites in simulated root canals cured with light transmitting posts and glass-fiber reinforced composite posts. <i>J Endod</i> 2005 , <i>31</i> , 104–106.	348 349
18.	BinMahfooz, A.M.; Qutub, O.A.; Marghalani, T.Y.; Ayad, M.F.; Maghrabi, A.A. Degree of conversion of resin cement with var-	350
10	ying methacrylate compositions used to cement fiber dowels: A Raman spectroscopy study. <i>J Prosthet Dent</i> 2018 , <i>119</i> , 1014–1020.	351
19.	Lu, H.; Mehmood, A.; Chow, A.; Powers, J.M. Influence of polymerization mode on flexural properties of esthetic resin luting agents. <i>J Prosthet Dent</i> 2005 , <i>94</i> , 549–554.	352 353
20.	Braga, R.R.; Cesar, P.F.; Gonzaga, C.C. Mechanical properties of resin cements with different activation modes. <i>J Oral Rehabil</i> 2002 , <i>29</i> , 257–262.	354 355

- 21. dos Santos Alves Morgan, L.F.; da Cunha Peixoto, R.T.R.; de Castro Albuquerque, R.; Santos Corrêa, M.F.; de Abreu Poletto, L.T.; Pinotti, M.B. Light transmission through a translucent fiber post. *J Endod* **2008**, *34*, 299–302.
- 22. Goracci, C.; Corciolani, G.; Vichi, A.; Ferrari, M.. Light-transmitting ability of marketed fiber posts. *J Dent Res* **2008**, *87*, 1122–1126.
- 23. Radovic, I.; Corciolani, G.; Magni, E.; Krstanovic, G.; Pavlovic, V.; Vulicevic, Z.R.; Ferrari M. Light transmission through fiber post: The effect on adhesion, elastic modulus and hardness of dual-cure resin cement. *Dent Mater* **2009**, *25*, 837–844.
- 24. Akman, M.; Eldeniz, A.Y.; Ince, S.; Guneser, M.B. Push-out bond strength of a new post system after various post space treatments. *Dent Mater J* **2016**, *35*, 876–880.
- 25. Öztürk, C.; Polat, S.; Tunçdemir, M.; Gönüldaş, F.; Şeker, E. Evaluation of the fracture resistance of root filled thin walled teeth restored with different post systems. *Biomed J* **2019**, *42*, 53–58.
- 26. Bhandari, M.; Nikhil, V.; Grover, S.; Jaiswal, S.; Srivastava, N. Comparative evaluation of root filled teeth with monoblock obturation systems: an ex-vivo study. *J Adv Med Dent Scie Res* **2019**, *7*, 87–91.
- 27. Tay Franklin, R.; Pashley, D.H. Monoblocks in root canals: A hypothetical or a tangible goal. J Endod 2007, 33, 391–398.
- 28. Ghosh, A.; Lenka, S. Endodontic sealers: current concepts of sealers. Indian J Public Heal Res Dev 2019, 10, 163.
- 29. Demiryürek, E.O.; Külünk, Ş.; Yüksel, G.; Saraç, D.; Bulucu, B. Effects of three canal sealers on bond strength of a fiber post. *J Endod* **2010**, *36*, 497–501.
- 30. Bohrer, T.C.; Fontana, P.E.; Wandscher, V.F.; Morari, V.H.C.; dos Santos, S.S.; Valandro, L.F.; Kaize, O.B. Endodontic sealers affect the bond strength of fiber posts and the degree of conversion of two resin cements. *J Adhes Dent* **2018**, *20*, 165–172.
- 31. Miyhara, H.; Ikeda, H.; Fujio, Y.; Yoshii, S.; Nagamatsu, Y.; Kitamura, C.; Sshimizu, H. Chemical alteration of Ag-Pd-Cu-Au alloy surface by alumina air-abrasion and its effect on bonding to resin cement. *Dental materials J* **2019**, *38*, 1-8
- 32. Alkhudhairy, F.; Alkheraif, A.; Naseem, M.; Khan, R.; Vohra, F. Degree of conversion and depth of cure of ivocerin containing photo-polymerized resin luting cement in comparison to conventional luting agents. *Pakistan J Med Sci* **2018**, *34*, 253–259.
- 33. Baldissara, P.; Zicari, F.; Valandro, L.F.; Scotti, R. Effect of root canal treatments on quartz fiber posts bonding to root dentin. *J Endod* **2006**, *32*, 985–988.
- Palma, P.J.; Marques, J.A.; Antunes, M.; Falacho, R.I.; Sequeira, D.; Roseiro, L.; Santos, J.M.; Ramos, J.C. Effect of restorative timing on shear bond strength of composite resin/calcium silicate–based cements adhesive interfaces. *Clinical Oral Investigations*, 2020, published online (https://doi.org/10.1007/s00784-020-03640-7)

376

377

378